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Abstract—The decoupling of the nonlinear system governing the equilibrium of a deformed planar curved
bar subjected to a general compressive loading function is presented. Also, the solution of the differential
equation with variable coefficients with respect to the radial displacement of a circular bar, subjected to
terminal concentrated forces, was achieved in form of hypergeometric functions; the limit of this solution
led to the exact expression of the radial displacement of a flexible shallow arch when the axial force was
assumed constant. Finally, the buckling analysis of several shallow or not arches under terminal concen-
trated forces or uniformly distributed pressure was investigated and the buckling loads were given in a
closed form.

1. INTRODUCTION
Buckling of shallow arches and rings under uniform external pressure is a well-studied problem.
Timoshenco and Gere[l], Boresi[2), Wempner and Kesti[3] have examined this problem,
neglecting the effect of compression on bending of the ring. Also, in order to take into account
the effect of a uniform pressure on the deformation of a circular arch or ring, they assumed
only inextensional deformations and considered that the internal forces of any cross section
reduce to a constant axial force and a bending moment.

Smith and Simitses[4] examined the three loading cases of circular rings and arches in the
derivation of the critical loading including the effect of transverse shear, i.e. the case when the
force remains normal to the deformed ring during buckling; the case when the force remains
parallel to its initial direction during buckling, and the case when the force remains directed
toward the initial center of curvature during buckling (centrally directed pressure). It must be
‘noticed here that the authors of [1-3] presented a derivation only for the third case loading.

On the other hand, Fung and Kaplan[5] as well as Gjelsvik and Bodner[6] had derived
approximate solutions for various shallow arch buckling problems. All these investigations are
valid for arches with zero initial thrust.

Finally, Batterman[9, 10] showed that a direct and consistent scheme for solving the ring
buckling problems, as well as all curved buckling problems of any material, is provided by the
rate-equation approach.

In the present investigation the mathematical formulation and the solution technique of the
buckling problem of a planar bar subjected to a general compressive external loading are
presented. Taking into consideration that the curvature of the bar remains unchanged after
deformation, the previous problem consists of a system of six coupled nonlinear differential
equations with respect to the generalized forces and displacements of the center-line. In the
three first equations of this system (equilibrium equations) the effect of all generalized
displacements has been taken into account (theory of the second order); a fact that is valid in
the well-known Euler's buckling problem of a straight bar. In the following, through ap-
propriate treatments and the results developed in Ref.[11,12], the previous system was
decoupled, so that a differential equation of the fourth order with variable coefficients emerged
with respect to the tangential displacement; it must be noticed here that in the foregoing
procedure the effects of the axial force and transverse shear have been taken into account.

Moreover, the determination of the radial displacement in form of hypergeometric functions
in the case when a circular bar is subjected to a terminal concentrated force was obtained:
limiting these expression for the radial displacement, an exact solution of a differential equation
with constant coefficients was obtained. The last equation expressed the problem of a shallow
flexible bar subjected to the same loading, whose axial force is assumed constant. Then, the buckling
of several shallow or deep arches under either terminal concentrated forces or a uniformly
distributed pressure was investigated and the critical buckling load was given in a closed form.
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2. MATHEMATICAL FORMULATION

We consider a planar curved bar of uniform cross section and curvature x(s)= 1/R(s),
subjected to a co-planar compressive general loading; here s is the arc length. We consider also
that after deformation the curvature function remains unchanged. We assume the principal triad
with unit vectors (t, n,b) referred to a generic point Q of the center line of the bar, so that:
t = (4,(s), t2(5), 0) is the unit tangent vector pointing to the direction of s increasing, n = (n,(s),
ny(s), 0) is the unit normal vector pointing to the center of curvature and b= (0,0, 1) is the unit
constant binormal vector; b is defined in such a way that the principal triad to be a right-handed
system. [t mustbe noticed also that the axes of nand bcoincide with the principal axes of inertia of the
cross section. Finally, we denote + ¢ the angle subtended by the positive x-axis and the positive t-axis
(Fig. 1a). Based on the previous symbolisms it is valid that:

ds = - delx(s). @.1)

Also, if x=x(s), y=y(s) are the analytical equations of the center-line of the bar, the
well-known Serret-Frenet formulae for the point ) may be written as:

h=x' b=y
(2.2a)
n=x"lx,ny=y"lx
or, based on relation (2.1), we have:
t1=—Kx,t2=“K)"
_ _ (2.2b)
m=-l,m=-h
ty &
y,
r’ +t ®
T
1
/7 II
0L~7® *S by An
A
I &
=t A
b 5,

(a)

1}

7"' dy’ yu
(b)

Fig. 1. Geometry and sign convention of a planar curved bar (la); free body diagram (Ib).
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where primes designate differentiations with respect to s, dots differentiations with respect to ¢
and:

1, =C08 ¢, 1, =sin ¢, n, = sin ¢, n; = — oS ¢.

Based on Refs.[11, 12] the nonlinear equilibrium differential equations (in terms of general-
ized forces and displacements) of an arc element with respect to the principal triad are given by:

T,=«T,+q, (2.3a)
T.=-«xT,+q, (2.3b) ; 2.3)
ML=-Tn+mb+Ttylll-Tuy,t (2.30)
¥ =—asM, (24a)
yi=xky =BT, (24b)} 2.4)
Yn=—ky+ ¥y — BT, (24¢)

where T =(T,, T,,0); M =(M, M,,0) represent the vectors of internal forces and moments;
Y =(¥ ¥ 0), ¥ =(0,0, ¢) the vectors of translations and rotations and Q=(q,, ¢..0); M =
(0,0, m,) the vectors of external forces and moments respectively. Also, 8, B, a; are
constants given by:

ﬁ] = I/EF, Bz = ”GVF, az= l/EIb (25)

where E,G are the moduli of elsaticity and shear respectively; F is the area of the cross
section; I, represents the principal moment of inertia of the cross section about the b axis and »
is a coefficient depending on the shape of the cross section. The nonlinear term Ty, - T.y;
denotes the additional moment T, dy, — T, dy,, which is caused by the axial force T, and the
transverse shear T, (Fig. 1b).

It must be noticed here that the extension of the center-line of the bar is given by eqn (2.4b),
which can equivalently written as:

E=KYn = Y (2.6)

where ¢ is the axial strain.
Relation (2.6) coincides with the relation given in ([1), p. 282).

3. DECOUPLING AND SOLUTION OF SYSTEM (2.3)(2.4)
Equations (2.3a) and (2.3b), after differentiation and successive substitutions, lead to:

(TYx) + kT, = g, +(qdx)

3.1
T,=-«T,+q,

The first of (3.1) is a self-adjoint differential equation whose general solution has been given in
Refs.[11,12] in a closed form as follows:

T,=Cicos o+ Cysine+f (3.2)
where f is a particular integral under the form:

f=cos¢j;sinqag"—t(';qwds—sinqpfcos:pg‘ﬂxwds

and Cy, C; are the constants of integration, which can be determined through suitable boundary
conditions. Thus, T; and T, can be considered as known functions.
From eqn (2.4b) and (2.4c) it can be readily derived:

(&) +xy, =y +8 (3.3)
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where

g =-B(T/x) - BT,

Based on relations (3.3), eqns (2.4a), (2.4b), (2.3c), after differentiations and substitutions,
become:

Uy =(yilk) +xy, — g
Yo =y + BTk (3.4)
M, = —1as[(yi ) + (ky) — g'].

Finally, after differentiation of eqn (2.4a) and based on (2.3c), (3.4) the following complete
linear differential equation of the fourth order with variable coefficients is obtained:

()’r/K)”""(KYt)"'*’aBTx()'r/K) a;T,yi= (3.5

where
z==B(T/x)" = B Th+ ay[T, — m, — B, Ti(T /)]

and y, is the tangential displacement.

So, the problem of the deformation of a planar curved bar subjected to a general
compressive co-planar external loading leads to the differential equation (3.5) with respect to
the tangential displacement. In the formulation of this equation the effects of the axial force T,
and transverse shear T, have been taken into account. Also, the effect of T, is introduced by
the term a;7,y;; taking into consideration that this effect can be neglected, eqn (3.5) can take
the final form:

(k)" +(ky)' + a3 Ti(yil k) = z. 3.6)

The general integral of (3.6) can be solved only numerically (i.e. through Runge-Kutta's
method) for suitable boundary conditions.

The aim of this investigation is to provide the closed form solution of eqn (3.6) in the case of
a circular bar and afterwards to determine the buckling load of this bar for several cases of
loading and response. Thus, if x(s)=1/R = const, eqn (3.6) based on relations (2.4b) and (2.1)
can be transformed to:

yut+ (k4 asT)y, = kB T+ ay(T, — my) - B, T, 3.7
where y, is the radial displacement.
We notice here that, neglecting the term « in the left-hand member of eqn (3.7) and using
relation (2.6), the resulting expression coincides with the one given in eqn (6) of Ref[8].

Transforming relation (3.7) through the relation (2.1) the following differential equation
results:

(1+"3T') =@{‘L—§%m-mb)+@-’{l 38

which by the substitution;
y=h
leads to:

i (1420 n =Bl gy Bl 39)
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Let us consider now a circular bar AB compressed by two forces P acting along its cord (Fig. 2).

Then, it is valid:

@=q,=my=0

T,=Pcose, T, =Psing

Introducing now relations (3.10) in (3.9) the following Mathieu’s equation arises:

h+(1+A%cos )h =—g£1sin¢

where:

Ar= Pk, = By + B+ (asli).

Accepting that for arches with epicentral angle 0 < ¢ < #/2 it is valid that:

cos = 1-¢?[2
the homogeneous differential equation of (3.11) takes the form:
R+(1+A2=A%Y2)h =0.
The last equation through the substitution:

20,

2

has a solution, see[13], the function:

12\ 14
h= (%) p-”‘[C]MI:.m(p)+ Csz.—m(p)l

where:

My (p) = p* exp (- p/2),Fi(a, v; p)
M _n(p) = p"* exp(- p/2)\F\(&, ¥; p)
k=(1+\2"2/4\, m=1/4
a=[N=(1+2\22)/4\, y = 3)2,
a=—(1+ 2"\ 53=12

and C,, C, are integration constants.

b4 Fy
s s
.
a
®
(1/"
P A 8
bal) -~y
P

Fig. 2. Geometry and sign convention of a circular bar.
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(3.11)
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(3.13)

(3.14)

(3.19)
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In relations (3.15) (F, is the degenerate hypergeometric function given by:

ap a(a+1)p_ a(a+1)(a+2)p_
1‘ y(iy+1D 2! y(y+1)(y+2) 3!

Fa,y:p)=1+= +-

So, the two linearly independent particular solutions of eqn (3.13) are:

hi(p) = p"exp (- p/2),Fi(a, v; p)
hy(p) = exp (- pl2)iFi(a, ¥; p)

which can be equivalently written:

hi(p)= 2 Arexp (-pIDp™

w (3.16)
hy(p) = 2.:0 A, exp (- pl2)p"
where:
Ac=1,A,=aly, Ay=ala+ D)y(y+1)2!,...
@3.17

Av=1,A=aly Ay=al@a+)§5+12!,...

Applying now the method of variation of constants, the general integral of (3.11) can be
expressed as:

h(p) = Cih\(p) + Cohop) + haP)F 5y — hi(P)F2h) (3.17a)

where F, 4, is the real functional:

Fum = || h,(p)ﬁz(s:; thi::mhz(p) fo)dp G175
and:

R(p)= 3 A exp (- pi2) 2L pen-on

hz(P)=2 A, exp (- p/2)np"”! (3.17¢)

Based on the previous procedure and on the relation y, = h the radial displacement y, can be
easily derived; in fact, introducing the incomplete gamma function:

l)n a+n

'y(a,x)=I exp (- Nt 'dt—zo—m

and taking into account that:
(A21I2I2)¢2 - p

we have:

o 12 i2
yale) = C ZOA,.Z""*”” (2n+3 ).24 )+C2 2 A2 <n+l, i " )

+A212 L [A2(@)F o) — Bi(@F Liyplo deo + C; (3.18)

where C; is a new integration constant.
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After the determination of y, the quantities y,, ¢4, M, result through eqns (3.4) and (2.1). It
must be noticed here that the expression of the function y, introduces another integration
constant C,. The constants C(i=1,...,4), as well as the buckling load for several cases of
response and loading of the circular bar can be achieved under suitable boundary conditions.

For large values of the parameter |k|, i.e. for shallow and flexible bars, (equivalently for
A2 1), we have:

: — 1 ~m=(114) . 1}4 - - l
[lklt?o Mim= v rQm+ Dk p cos(z\/(kp) mn zrr)

(3.19)
: = 1 _ m(1/4),, 1/4 ( _1
l!:llTo My VEF( 2m + k™~ W9 cosl 2V (kp) + mmr 47r)
where I' is the gamma function.
Because of:
2912
k=i‘%-)-2—-,zm _4,1‘(2m+]) \/" 5 T(=2m+1)=2V7
relations (3.19) lead to:
Ilklm Mk =k 114 14 Slﬂ(] +A2)IIZ
(3.20)

{ixtm M =2p"cos (1+1%)2,

So, based on formula (3.14) and relations (3.20) the particular integrals of the differential eqn
(3.13) result to:

hy(g)=sin V(1 +A)e

hye) = cos V(1 + A ).

(3.21)

The solutions (3.21) coincide with those of the homogeneous differential equation (3.11) through
the approximation cos ¢ =1, or a;T,/x* =const. Consequently, it can be concluded that, for
shallow and flexible circular bars compressed by two forces P acting along their cord, it is valid:

a1,
—:;—1 = const.

Thus, eqn (3.11) becomes a differential equation with constant coefficients:

F+uth = -35- sin ¢ G.22)
where:
wW=1+Al=1+ g:,l: = const. (3.22a)

By now, the functions y., y. ¥, M,, based on relations (3.4), (3.11), (3.12) and (3.21) and on
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notations of Fig. 2, derive as:

1 . Pup
u[ Clcosu¢+Czsmu¢+C3+K(u2_l)cos¢]

1 . Pu? u .
Y= Clsmu¢+C2cosu¢-C,u¢+C4+—K ([3,——7—-——u —)sine

W = ";Kf [C,(u2 - Dsinug+ Cu* - cosug + Csue— C,  (3.23)
( l+ 2)Pu2 sin ]
Bt B g
K

2
M, = —7';— [C.(uz— 1) cos ug — Cy(u* - 1) sin u¢+C3-%—+‘,jzm‘£COS 40]
3

where the dimensionless quantity u is given by the relation (3.22a). In the following, based on
eqns (3.22)-(3.23) and through the suitable boundary conditions of the problem, the critical
buckling loadings of several cases of shallow or not circular bars will be determined. This
procedure is based on the research of limit points which are found through the solution of a
transcendental equation corresponding to each of the previous cases.

4 BUCKLINGOFSHALLOWCIRCULARBARS
4.1 The cantilever circular bar

Consider the circular cantilever bar AB, with the one end A fully fixed, subjected to two
compressive forces acting along its cord (Fig. 3a). The boundary conditions for this problem

y
+s A—s
e 1l
)
4 .
8, F x
o4 ) ‘
*rXi-y
(a}

x v

Fig. 3. A cantilever circular bar subjected to terminal forces (3a); a circular bar with hinged ends subjected
to terminal forces (3b); a circular bar with both fixed ends subjected to terminal forces (3c).
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are:

Yaly)=0
y(y)=0
d(y)=0 @.1)
M,(y)=0
M,(-v)=0.

Taking into account eqns (3.23) the four last of the previous conditions lead, after algebraic
manipulations, to the following relations:

_P sinx( u )
C‘_xsinuy Bty

Cz =0
C,=- % {— cot uy sin y[Bo(u? — 1) + ]+ u(By + B;) cos 7} @2)

C. =§{— uy cot uysin y[Bx(u? - 1)+ u]+(B; + BX(u*y cos y —sin y)}

where:
u=(1+a;P/x?)".

Moreover, the first of (4.1), based on eqn (4.2), leads to the following transcendental equation
with respect to u:

utanycotuy=1+ Bi 4.3)

Bi+ E; +(a/x%) + ﬁz.

u‘-1

.This equation, determining the critical buckling load P, can be, furthermore, simplified as
follows:

We notice that:
a
;% ® B+ B,

In fact, for a bar of large radius of curvature and of quandragular cross section of depth
h(v = 5/6) and because of relations (2.5) the last inequality leads in the following expression (for
G = E2):

R*>1%/3,53

which is obviously valid because R?> h% So, 8, = 8, =0. Also, as 8,;P <1 the right member of
(4.3) becomes:

1+ 51+3|P51.

B
Bit Ez+(a3/Kz)+ 8,

u -1
Consequently the transcendental eqn (4.3) takes the form:
utanycotuy=1, 4.4
If u\(uy > 1) is the smaliest root of (4.4), the buckling load P,, results:

P., = (u* - 1)x?El,. 4.5
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Table 1. Dimensionless ratio (1 + a;P,/x?)"?

Y 10’ 15° 30° 45° 60° 78° 90°

u, | 2571585 17,185 8,621 5,782 4,378 3,544 3

In Table 1 several values of u, = (1+ asP./«x)"? are given for various values of the angle ¥.
We notice here that the relations (4.4), (4.5) and some of the results of the Table 1 coincide

with those given in Ref. ([1], p. 300), where the buckling of a uniformly compressed arch with
both fixed ends is examined.

4.2 The bar with hinged ends

If a circular bar with hinged ends is compressed again by two forces P acting along its cord,
the boundary conditions can be expressed as:

1 (0) = 3(0) = ya(27) = yi(27) =0

(4.6)
M, (0) = M,(2y) =0.
Taking into account that it is valid (Fig. 3b):
T,=Pcos(y—¢), T, =Psin(y—¢),ds =Rde¢
eqns (3.23) take the form:
Yn = -};[ Cicos ug + Cysinup + C3 + -—(:i‘éijcos (y- qa)]
%= %[ C,sin ug ~ Cycos up + Ciup + C, + (Bl —#—1> sin(y - qo)]
W = ff[C,(u2 — 1) sin ug + Co(u* = 1) cos ug + Csup + C,
+21g + gy sin(y- o) | @
M, = ;K:;[ ~ C(u* - 1) cos ug + Cyu? — 1y sin up - G +5‘K2 (B1+ B2 cos (y— qo)].
The combination of (4.7) and (4.6) leads to the following algebraic system:
—C,+C3+‘—(-(-‘-ljé%3cosy=0 (4.82)
- €, cos 2u'y +Cysin2uy+ Cs + —(—l‘f‘,‘f—l) cos y=0 (48b)
-G+ Cy+ (Bl —#—) siny=0 (4.8¢c)
- C; sin 2uy — C;cos 2uy+ Ci2uy + C,— uTZP (ﬂ, - ?E_'-_—l-) siny=0 (4.8d)
— - 1)~ G+ BB B o g (4.8¢)
- Cy(u? - 1) cos 2uy + Cy(u*— 1) sin 2uy — C3 +y§ B+ Br)cos y=0 (4.8f)

from the decoupling of which we have:
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COS (B] + Bz +_#_.)
C=- P°°s (p, + 52+—#-—) tan uy 49)
CF%S—X(BM&-#)
Cy= -—P-gi(iz [(Bﬁ 62+?E:_1) tan uy + u <ﬂ1 —1L) tan 'y]

The addition of eqns (4.8b) énd (4.8f) becomes an identity; therefore, from the six boundary
conditions (4.6) only the five are independent. Finally, substituting the coefficients C; in eqn
(4.8d) the following transcendental equation derives:

BI+BZ+M—11 Bl _#_ 2

mu—ymnu B T8 tany-l 4.10)

By putting B, = 8. =0, eqn (4.10) becomes:

ucot uylu’tany—y)+vyl=1. @4.11)
If u,(u;> 1) is the smallest root of the last equation the buckling load P, can be derived from
the formula (4.5). So, we formulate the Table 2. Here we remark that the critical load is greater
than the corresponding load given in Table 1, i.e. the buckling load of a circular bar with hinged
ends is greater than that of a cantilever one; this result is in agreement with the result given by
Euler for the buckling of straight rods.

4.3 The bar with both fixed ends
Here the boundary conditions are, (Fig. 3¢):

¥a(0) = 7,(0) = y,(27) = y,(2y) =0
4.12)
U(0) = ¢,2y)=0.

Substituting eqns (4.12) into (4.7) and, after the decoupling of the result system, we obtain:

=-E (B,# ?%-7) sin y cot uy
=—E[(ﬁﬁ;’-‘:—l)cotw—ﬁg—lcot'y]sin)’ 4.13)

Ci= —%(ﬂ|u2+ﬂ2-—y.) sin Y

as well as, an analogous to (4.10) transcendental equation, from which the critical load can be
determined:
2
u tan y cot uy = vp +ﬁJu t8,- p'tan‘y 4.19)

(Bt )= (Bt g)y

Table 2. Dimensionless ratio (1 + ayP,./x?)!?

v 10 15 30 48’ 60° 78° 90°

A 26,36¢ 17,897 14,990 9,9% 7,475 5,993 5,016
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Table 3. Dimensionless ratio (1 + ayP,/x?)"2

| !

n ° : e H > 5 3

¥ 10 18 © 30 L4 60 75 96"

) l
b, 32,948 21,994 17,379 l 11,598 8,709 6,979 5,826

Assuming B, = B, =0 we have:

2

wtanycotuy = - tany. (4.15)

If u;(u;>0) is the smallest root of (4.15) we form the Table 3. We notice here that the critical
buckling load P, is greater than the corresponding P., of cases 4.1 and 4.2, as exactly it is valid
in Euler’s theory of buckling for straight rods.

S. BUCKLING OF A UNIFORMLY COMPRESSED CIRCULAR BAR
5.1 The bar with hinged ends

We consider now a circualr bar AB with hinged ends, submitted to the action of a uniformly
distributed pressure g, (Fig. 4a). Then:

T,=T,, = qR=const.
T,=0 (.0
M, =0 before deformation.

We remark that the axial force 7, is constant for every point of the center line; so, since the
second member of eqn (3.9) does not exist, the differential equation (3.8) has the following
general integral:

- C,i-cos ug + Czi-sin up + Cs.

>

x ¢

(b)

Fig. 4. A circular bar with hinged ends subjected to a uniformly distributed pressure (4a); a circular bar
with both fixed cads subjected to a uniformly distributed pressure (4b).
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Now, based on the previous procedure and on relations (3.4) the functions y,, y» ¥, M, can be
derived as follows:

Yo =;1‘-(—C, cos ugp + Cy sin ug + Cs)
Y= ;17(- Cisin up — C; cos up + Cyup + Cy - u*B1qR%p)
= Elq'i [Ci(u? = 1) sin ug + Co(u® - 1) cos ue + Csup + Co— u*B1qR%¢]

M, = #ﬁg [ Cy(u?—1) cos ue + Cy(u? - 1) sin ug — C; + up,qR?).
3

Also, because of relations (5.2) the boundary conditions given by eqns (4.6) lead to the
following algebraic system:

-Ci+G=0 (5.3a)
=Cycos 2uy+ Cysin2uy+ Gy =0 (5.3b)
- Cz + C4 =0 (5.30)
- C, sin 2uy — Cycos 2uy + C2uy + Cy— 2u*yB1qR* =0 (5.3d)
- C(u?-1)- Cs+ upqR? =0 (5.3¢)
- C(u? - 1) cos 2uy + Cy(u* - 1) sin 2uy — C; + up,qR? = 0. (5:30)

From the combination of (5.3a), (5.3¢) and (5.3b), (5.3f) we have:

C1 = C3 = B,qulu
Cy=Ci=-ByqR*tan uylu.

We notice here that eqn (5.3c) is an identity; so, from the six boundary conditions (4.6) only the
five are independent. Also, eqn (5.3d) becomes:

tan uy = uy(1 - u?). (5.4

If u,(u,>1) is the smallest root of eqn (5.4) the critical buckling load g, results from the
following relation:

do= (=) 2 6.9

For various values of the epicentral angle y the Table 4 is constituted. In the values of the
parameter ¥; of the Table 4 the effect of compression of the bar have been taken into account.
If this effect is omitted (8, = 0) then we have:

sin2uy=0
(5.6)
cos 2uy =0.
Equations (5.6) are verified simultaneously for:
sin2uy =27pu=aly. 5.7

Table 4. Dimensionless ratio (1 + ¢.,R* EL, )"

Y Ty 1s’ 30 4s’ 60 75° 90"

& | 2700167) 1800281 900506 6,00771 | 4,51045 3.61339 | 3,01661
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So, the functions y,, y,, ¢y, M, are:

=% Cysin ug
1
= 7 Cy(1 —cos ug)
(5.8)
W = Cz[l +(u*—1) cos ug]
M, = a;uRz Cy(u?— 1) sin ug
and the corresponding critical load gq,, resuits:
_ElL (= ( )
cr -1 5.9

The last formula coincides with the relation given in Ref. ({1], p. 297). Also, the first of (5.8) for
q = g, gives:

uy, = C, sin%qp

and for ¢ = y
uy, =0y, =0.

So, it was assumed that the buckled bar had an inflection point at the middle.
Finally, for the determination of the integration constant C, of eqn (5.8) the theorem of
elastic energy is used, i.e:

2y

2y
q dsy, = a;j M, ds
[} 0

from which

C = a;qu’R* 1-cos 2uy
27 -1y sin 2uy’
uy "—T—-

(5.10)

Based now on eqn (5.7) we make the Table 5. From the comparison of results in Table 4 and 5
we noticed that, if 8, =0, the buckled load q., is smaller than the corresponding q.. when
B, #0.

5.2 The bar with both fixed ends
If the ends of a uniformly compressed bar are fixed, (Fig. 4b), then the following relations
are valid before and after deformation respectively:

T, = qR = const

T.=0 (5.11a)
M,=0

Table 5. Dimensionless ratio (1 + g, R*/ E,)"*

° o o o

Y 10° 18 30 45 60 75" 90

u 18 12 6 4 3 24 2
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T,=qR+ysin(y-¢) (5.11b)
T,=-ycos(y—¢)

where y is the unknown function of the normal reaction in the fixed ends. Consequently, in this
case the general solution of the homogeneous differential equation of (3.8) is:

-C,%cos u¢+C2%sin up + C,.

Also, the second member of (3.9) becomes:

- uRycos (y—¢)

the particular integral of which is:
R
u;_ 1 ycos (y—e)

Through a similar procedure to that developed in the previous sections, the following algebraic
system results:

G+ G+ MR ysiny =0 (5.12a)
- Cycos uy+ Casin2uy + Gy~ 4Ry sin y =0 (5.12b)
-C+C—uR (B,—?E_—i)ysin-y=0 (5.12¢)
- Cisin2uy - C;cos 2uy + Cuy + Cy- wBiaR2y ~uR (B )yoos y=0 (.12
Cou? = 1)+ C,— u™R(B, + Ba)y cos y =0 (5.12¢)

Cy(u? = 1) sin 2uy + Co(u? - 1) cos 2uy + C2uy + C4— u’R(B, + By)y cos y
- u?8,qR?2y =0 (5.126)

from the decoupling of which we have:

Ci=Rycos y [- (Bz+;2_L1) cot “7"’?""5—1;{‘%%]
Ci=R (B + ) ycosy

(5.13)
Ciy=Rycos vy [— (B2+;5_L1) cot uy+F"_than y cot? uy]
Co=R(u’B+ B, —p)ycos y
Cyu? sin 2uy + Cyu? cos 2uy - u’R(B; +7u—_l) ycosy=0. (5.14)
The combination of eqns (5.13), (5.14) gives:
_ -1
u tan y cot uy—ﬁ,TH. (5.15)
Putting 8, =0 eqn (5.15) becomes:
utanycotuy=1. (5.16)

from which, based on the formula (5.5), the critical buckling load q,, results.
§$ Vol. 12, No. 4D
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It must be noticed here that the relation (5.16) coincides with (4.4) and so the smallest root
of (5.16) takes the same values with those given in Table 1. The unknown function y can be
determined through relations (5.13). Indeed, introducing the coefficients C; in (5.12d) and after
sucessive manipulations we have:

2
y(u) = Biu‘qRy e — 51
cos Y{(ﬂz‘*“pﬂ_—l)(l - uy cot u'y)+—ﬁ——~&7-;z-1———?(uy_ 1)}
If B, =0 then:
- Bi’qRy(u? - 1)
yw p cos ¥[1 — uy cot uy + u cot uy tan y(uy — 1)} (5.17a)
and if 8;=0

y(u) =0. (5.17b)

6. CONCLUSIONS

A method is developed and demonstrated for investigating the nonlinear and buckling
analysis of planar curved and circular compressive bars. The more important results of this
procedure can be concluded as follows:

1. The possibility of decoupling of the nonlinear system (in terms of generalized forces and
displacements) governing the equilibrium of the bar, in which the effect of transverse shear has
been taken into account;

2. Based on hypergeometric functions, the solution of the homogeneous differential equa-
tion (with variable coefficients) governing the radial displacement of a circular thin bar;

3. The proof that, for scallow and flexible circular bars, the previous solution converges to
an exact one corresponding to the case of constant axial force acting along the central line of
the bar;

4, The determination of the critical buckling load for several cases of shallow or deep
flexible circular bars; and

5. The conclusion that analogous results with those of Euler’s buckling theory for straight
rods are valid.

As a final remark, it is worthwhile noting that from the results included in Tables 1-5 only
those of Table 1 have been already derived by Timoshenko (Ref.[1]); a fact that partially
confirms the validity of the method.
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